
Basic key exchange

Trusted 3rd parties

Key management

Problem: n users. Storing mutual secret keys is difficult

Total: O(n) keys per user

A better solution

Online Trusted 3rd Party (TTP)

TTP

Generating keys: a toy protocol

Alice wants a shared key with Bob. Eavesdropping security only.

Bob (kB) Alice (kA) TTP

ticket

kAB kAB

“Alice wants key with Bob”

(E,D) a CPA-secure cipher

choose
random kAB

Generating keys: a toy protocol

Alice wants a shared key with Bob. Eavesdropping security only.

Eavesdropper sees: E(kA, “A, B” ll kAB) ; E(kB, “A, B” ll kAB)

(E,D) is CPA-secure ⇒
eavesdropper learns nothing about kAB

Note: TTP needed for every key exchange, knows all session keys.

Toy protocol: insecure against active attacks

Example: insecure against replay attacks

Attacker records session between Alice and merchant Bob

– For example a book order

Attacker replays session to Bob

– Bob thinks Alice is ordering another copy of book

Key question

Can we generate shared keys without an online trusted 3rd party?

Answer: yes!

Starting point of public-key cryptography:

• Merkle (1974), Diffie-Hellman (1976), RSA (1977)

• More recently: ID-based enc. (BF 2001), Functional enc. (BSW 2011)

Basic key exchange

The Diffie-Hellman
protocol

Key exchange without an online TTP?

BobAlice

Goal: Alice and Bob want shared secret, unknown to eavesdropper

• For now: security against eavesdropping only (no tampering)

eavesdropper ??

Can this be done with an exponential gap?

The Diffie-Hellman protocol (informally)

Fix a large prime p (e.g. 600 digits)

Fix an integer g in {1, …, p}

Alice Bob

choose random a in {1,…,p-1} choose random b in {1,…,p-1}

kAB = gab (mod p) = (ga)
b

= Ab
(mod p)Ba

(mod p) = (gb)
a

=

Security (much more on this later)

Eavesdropper sees: p, g, A=ga (mod p), and B=gb (mod p)

Can she compute gab (mod p) ??

More generally: define DHg(g
a, gb) = gab (mod p)

Insecure against man-in-the-middle

As described, the protocol is insecure against active attacks

Alice BobMiTM

Another look at DH

Facebook

Alice

a

Bob

b

Charlie

c

David

d ⋯

ga gb gc gd

KAC=gac KAC=gac

Basic key exchange

Public-key encryption

Establishing a shared secret

BobAlice

Goal: Alice and Bob want shared secret, unknown to eavesdropper

• For now: security against eavesdropping only (no tampering)

eavesdropper ??

This segment: a different approach

Public key encryption

E D

Alice Bob

Public key encryption

Def: a public-key encryption system is a triple of algs. (G, E, D)

• G(): randomized alg. outputs a key pair (pk, sk)

• E(pk, m): randomized alg. that takes m∈M and outputs c ∈C

• D(sk,c): det. alg. that takes c∈C and outputs m∈M or ⊥

Consistency: ∀(pk, sk) output by G :

∀m∈M: D(sk, E(pk, m)) = m

Semantic Security
For b=0,1 define experiments EXP(0) and EXP(1) as:

Def: E =(G,E,D) is sem. secure (a.k.a IND-CPA) if for all efficient A:

AdvSS [A,E] = |Pr[EXP(0)=1] – Pr[EXP(1)=1] | < negligible

Chal.b Adv. A

(pk,sk)G()
m0 , m1 M : |m0| = |m1|

c E(pk, mb) b’ {0,1}

EXP(b)

pk

Establishing a shared secret

Alice Bob

(pk, sk) ⟵ G()

“Alice”, pk

choose random
x ∈ {0,1}128

Security (eavesdropping)

Adversary sees pk, E(pk, x) and wants x ∈M

Semantic security ⇒

adversary cannot distinguish

{ pk, E(pk, x), x } from { pk, E(pk, x), rand∈M }

⇒ can derive session key from x.

Note: protocol is vulnerable to man-in-the-middle

Insecure against man in the middle

As described, the protocol is insecure against active attacks

Alice BobMiTM

(pk, sk) ⟵ G()

“Alice”, pk

(pk’, sk’) ⟵ G()

choose random
x ∈ {0,1}128

“Bob”, E(pk’, x)“Bob”, E(pk, x)

