Basic key exchange

Trusted 3" parties




Key management

Problem: nusers. Storing mutual secret keys is difficult
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Total: O(n) keys per user



A better solution

Online Trusted 3™ Party (TTP)
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Generating keys: a toy protocol

Alice wants a shared key with Bob. Eavesdropping security only.

Bob (k) Alice (k,) TTP

“Alice wants key with Bob”
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Generating keys: a toy protocol

Alice wants a shared key with Bob. Eavesdropping security only.

Favesdropper sees: E(k,, “A,B”Ilk,,) ; E(ky, “A B”Ilk,g)

(E,D) is CPA-secure =
eavesdropper learns nothing about k,;

Note: TTP needed for every key exchange, knows all session keys.



Toy protocol: insecure against active attacks

Example: insecure against replay attacks

Attacker records session between Alice and merchant Bob
— For example a book order

Attacker replays session to Bob
— Bob thinks Alice is ordering another copy of book



Key question

Can we generate shared keys without an online trusted 3™ party?
Answer: vyes!

Starting point of public-key cryptography:

 Merkle (1974), Diffie-Hellman (1976), RSA (1977)

* More recently: ID-based enc. (BF 2001), Functional enc. (BSW 2011)



Basic key exchange

The Diffie-Hellman
protocol




Key exchange without an online TTP?

Goal: Alice and Bob want shared secret, unknown to eavesdropper

* For now: security against eavesdropping only (no tampering)
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Can this be done with an exponential gap?



The Diffie-Hellman protocol (informally)

Fix a large prime p (e.g. 600 digits)
Fixan integer g in {1, ..., p}

Bob

choose random b in {1,...,p-1}

Alice

choose random ain{1,...,p-1}

Rice’, Ao g (midp)
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B? (modp) = (gb)a = kAB=gab (mod p) = (ga) = AP (modp)



Secu rity (much more on this later)

Eavesdropper sees: p, g, A=g®(modp), and B=g°’(mod p)

Can she compute g% (modp) ??

More generally: ~ define DH,(g? g?)=g® (mod p)



Insecure against man-in-the-middle

As described, the protocol is insecure against active attacks
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Another look at DH
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Basic key exchange

Public-key encryption




Establishing a shared secret

Goal: Alice and Bob want shared secret, unknown to eavesdropper

* For now: security against eavesdropping only (no tampering)
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This segment: a different approach



Public key encryption
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Public key encryption

Def: a public-key encryption system is a triple of algs. (G, E, D)
 G(): randomized alg. outputs a key pair (pk, sk)
 E(pk, m): randomized alg. that takes mE&M and outputs c €C

 D(sk,c): det. alg. that takes c€C and outputs meM or L

Consistency: V(pk, sk) output by G:
VmeM: D(sk, E(pk, m))=m



Semantic Security

For b=0,1 define experiments EXP(0) and EXP(1) as:

pk
b
< mg,m; e M: |mgy| =|m,|
EXP(b)

Def: E =(G,E,D) is sem. secure (a.k.a IND-CPA) if for all efficient A:

Adve [AE] = | PrEXP(0)=1] = PriEXP(1)=1] | < negligible



Establishing a shared secret

Alice Bob
(pk, sk) «— G()

“Alice”, pk
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X: Share/ secret



Security (eavesdropping)

Adversary sees pk, E(pk, x) and wants x EM

Semantic security =
adversary cannot distinguish

{pk, E(pk,x), x} from {pk, E(pk, x), randeEM }

= can derive session key from x.

Note: protocol is vulnerable to man-in-the-middle



Insecure against man in the middle

As described, the protocol is insecure against active attacks
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