

Basic key exchange

Trusted 3rd parties

Key management

Problem: n users. Storing mutual secret keys is difficult

Total: O(n) keys per user

A better solution

Online Trusted 3rd Party (TTP)

Generating keys: a toy protocol

Alice wants a shared key with Bob. Eavesdropping security only.

Generating keys: a toy protocol

Alice wants a shared key with Bob. Eavesdropping security only.

Eavesdropper sees: $E(k_A, "A, B" \parallel k_{AB})$; $E(k_B, "A, B" \parallel k_{AB})$

(E,D) is CPA-secure \Rightarrow eavesdropper learns nothing about k_{AB}

Note: TTP needed for every key exchange, knows all session keys.

Toy protocol: insecure against active attacks

Example: insecure against replay attacks

Attacker records session between Alice and merchant Bob

– For example a book order

Attacker replays session to Bob

– Bob thinks Alice is ordering another copy of book

Key question

Can we generate shared keys without an **online** trusted 3rd party?

Answer: yes!

Starting point of public-key cryptography:

- Merkle (1974), Diffie-Hellman (1976), RSA (1977)
- More recently: ID-based enc. (BF 2001), Functional enc. (BSW 2011)

Basic key exchange

The Diffie-Hellman protocol

Key exchange without an online TTP?

Goal: Alice and Bob want shared secret, unknown to eavesdropper

• For now: security against eavesdropping only (no tampering)

Can this be done with an exponential gap?

The Diffie-Hellman protocol (informally)

Fix a large prime p (e.g. 600 digits) Fix an integer g in {1, ..., p}

Alice Bob choose random **b** in {1,...,p-1} choose random **a** in {1,...,p-1} "Alice", A - g" (mod p) "Bob", $B \leftarrow g^b \pmod{p}$ $\mathbf{B}^{a} \pmod{p} = (g^{b})^{a} = \mathbf{k}_{AB} = g^{ab} \pmod{p} = (g^{a})^{b} = \mathbf{A}^{b} \pmod{p}$

Security (much more on this later)

Eavesdropper sees: p, g, $A=g^a \pmod{p}$, and $B=g^b \pmod{p}$

Can she compute $g^{ab} \pmod{p}$??

More generally: define $DH_g(g^a, g^b) = g^{ab} \pmod{p}$

Insecure against man-in-the-middle

As described, the protocol is insecure against active attacks

Another look at DH

Basic key exchange

Public-key encryption

Establishing a shared secret

Goal: Alice and Bob want shared secret, unknown to eavesdropper

• For now: security against eavesdropping only (no tampering)

This segment: a different approach

Public key encryption

Public key encryption

<u>Def</u>: a public-key encryption system is a triple of algs. (G, E, D)

- G(): randomized alg. outputs a key pair (pk, sk)
- E(pk, m): randomized alg. that takes $m \in M$ and outputs $c \in C$
- D(sk,c): det. alg. that takes $c \in C$ and outputs $m \in M$ or \bot

Consistency: \forall (pk, sk) output by G :

 $\forall m \in M$: D(sk, E(pk, m)) = m

Semantic Security

For b=0,1 define experiments EXP(0) and EXP(1) as:

Def: $\mathbb{E} = (G, E, D)$ is sem. secure (a.k.a IND-CPA) if for all efficient A:

 $Adv_{ss}[A,E] = Pr[EXP(0)=1] - Pr[EXP(1)=1] < negligible$

Security (eavesdropping)

Adversary sees pk, E(pk, x) and wants $x \in M$

```
Semantic security \Rightarrow
```

adversary cannot distinguish { pk, E(pk, x), x } from { pk, E(pk, x), rand∈M }

 \Rightarrow can derive session key from x.

Note: protocol is vulnerable to man-in-the-middle

Insecure against man in the middle

As described, the protocol is insecure against active attacks

